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Abstract

Interplay within microbial communities impacts ecosystems on several scales, and elucida-

tion of the consequent effects is a difficult task in ecology. In particular, the integration of

genome-scale data within quantitative models of microbial ecosystems remains elusive.

This study advocates the use of constraint-based modeling to build predictive models from

recent high-resolution -omics datasets. Following recent studies that have demonstrated

the accuracy of constraint-based models (CBMs) for simulating single-strain metabolic net-

works, we sought to study microbial ecosystems as a combination of single-strain metabolic

networks that exchange nutrients. This study presents two multi-objective extensions of

CBMs for modeling communities: multi-objective flux balance analysis (MO-FBA) and multi-

objective flux variability analysis (MO-FVA). Both methods were applied to a hot spring mat

model ecosystem. As a result, multiple trade-offs between nutrients and growth rates, as

well as thermodynamically favorable relative abundances at community level, were empha-

sized. We expect this approach to be used for integrating genomic information in microbial

ecosystems. Following models will provide insights about behaviors (including diversity)

that take place at the ecosystem scale.

Introduction

Microbial organisms comprise approximately 50% of the Earth’s biomass [1, 2] and their inter-

play drives most biogeochemical cycles [3, 4]. The study of microbial interactions, which occur

at the molecular scale, remains crucial to the elucidation of larger-scale processes [5]. Several

models have attempted to simulate the quantitative impact of molecular-scale processes at an

ecosystem level. Among others, trait-based approaches have gained attention as a precise way

to understand and predict the quantitative behaviors of microbial communities [6, 7]. How-

ever, such models remain difficult to apply to most communities without the additional exper-

tise required for deciphering particular traits and performing extensive experiments to design

accurate parameters [8]; such expertise is often unavailable for the study of natural

communities.
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In the last decade, great advances have been made in the development of high-throughput

techniques that enable the study of the metagenomics, meta-transcriptomics, and meta-meta-

bolomics of natural communities. Such techniques provide ‘omics-scale information for

organisms, from which it is possible to identify specific molecules (e.g., DNA, mRNA, metabo-

lites) present in a particular microbial ecosystem. Such studies of microbial ecosystems have

facilitated drastic changes in approaches utilized for characterizing microbial communities [9,

10], thus leading to the emergence of the field of microbial systems ecology. Further, advances

in bioinformatics and computational techniques have enabled the development of next-gener-

ation sequencing technologies for the qualitative analysis of microbial environments by

emphasizing who is there and who is not [11] and allowing the study of the co-existence of

microbial strains under different environmental conditions (see [12] for illustration). How-

ever, among the most significant challenges in modeling microbial communities remains the

ability to quantitatively predict microbial community composition and functions under spe-

cific environmental conditions.

We propose to overcome this challenge by using recent systems biology approaches for the

prediction of quantitative behaviors of single organisms based on genome-scale data [13, 14].

This study presents a natural extension of such approaches via their application to the model-

ing of microbial ecosystems and the elucidation of their quantitative features [15, 16].

Genome-scale descriptions, in this context, are provided by metabolic networks. A meta-

bolic network summarizes the set of biochemical reactions encoded by the genome of a given

organism. Two reactions are linked within a metabolic network if the substrate of one reaction

is the product of the other. Such genome-scale descriptions of organisms are currently applied

in systems biology for the purpose of investigating physiology [17]. In particular, for an

increasing number of species, current bioinformatics protocols build genome-scale metabolic

networks from genome-scale transcriptomic or metabolomic data [18].

Quantitative analyses utilize such metabolic networks as inputs for constraint-based models

(CBMs) in order to infer physiological features based on a genome-scale description [17]. As a

central assumption, constraint-based modeling considers the constraints defined by the set of

reactions as linked within a metabolic network at steady state, and assume the corresponding

model to behave optimally to achieve a given objective [13, 14]. The use of constraint-based

modeling for microbial ecosystems, which involves the generation of a framework to perform

data integration as well as mathematical descriptions useful for numerical simulations, seems

promising [16, 19].

Several attempts have been made to model the metabolic network of microbial communi-

ties. Rodrı́gez et al. [20] proposed to use a “supra-organism” assumption, which considers

reactions of all members of the community as a single entity. While such an approximation

was used in recent studies (see Biggs et al. [21] and Perez-Garcia et al. [22] for a review), Kilt-

gord and Segré [23] previously showed that fluxes from a compartmentalized network and its

de-compartmentalized counterpart (i.e., supra-organism approach) are significantly different

in their predicted FBA and FVA values. Furthermore, they show that fluxes using both

assumptions are often not correlated. Such a distinction between both modeling results, along

with the indisputable presence of compartments within ecosystems, clearly advocates for the

use of compartments in the modeling. Considering so, several modelings have been proposed.

However, while they all assume to consider distinct compartment for each microbial strain

involved, they differ in their use of choosing the objective function. Stolyar et al. [24] first pro-

posed a compartmentalized flux balance approach for modeling a mutualistic co-culture that

requires an “ecosystem function”. Such a function is usually a weighted sum of each compart-

ment objective. Nevertheless, the relative weight of each strain objective function remains
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herein at the discretion of an empirical expertise that is mostly out of reach for complex or

uncharacterized microbial ecosystems.

To overcome such a weakness, more elaborated modeling approaches have been proposed.

Zomorrodi and collaborators [25, 26] modeled each organism in a microbial community as a

single CBM with its own objective function, nested within a global ecosystem model, thereby

enabling the maximization of an ecosystem objective function. This approach still require to

design an ecosystem objective function but proposes a multi-level optimization that considers

both microbial strain and ecosystem objectives. Meanwhile, Khandelwal and collaborators

[27] (followed by [28]) advocates for the use of the “balanced growth” concept, according to

which all microorganisms grow at the same rate. Accordingly, this approach considers several

compartment with no ecosystem objective function per se but rather introduces community

fractions into the formulation, adding new degrees of freedom to the general optimization

problem. Worth noticing, such a modeling assumption is justified for microbial communities

for which biomass production is monitored and constrained in chemostat, but not necessary

for open systems as observed in nature.

In this study, we propose a complementary model, to investigate the general case of micro-

bial ecosystems. Based on Pareto optimality [29], we aim at describing all the feasible solutions

considering metabolic constraints from each strain with no design of ecosystem function.

Consistent with previous works, the present study considers the community as a compartmen-

talized system in which each organism (i.e., a compartment) has (i) its own objective to opti-

mize and (ii) shares metabolites through the environment. Contrary to above methods, our

approach is based on multi-objective optimization, which allows us to consider the objective

function of each organism simultaneously.

Specifically, following previous works, we implemented a multi-objective flux balance anal-

ysis method [30], henceforth known as MO-FBA, for microbial communities, which is based

on an exact resolution algorithm. Additionally, we introduced a complementary multi-objec-

tive flux variability analysis (MO-FVA) method. These analyses emphasize putative metabolic

behaviors that are optimal at the community level, while considering metabolic constraints for

each strain. Finally, we performed complementary thermodynamics analysis [31], which

enabled us to pinpoint (i) favored ecosystem responses to environmental parameters and (ii)

the corresponding diversity.

For the sake of MO-FBA and MO-FVA illustration, this study models a microbial ecosys-

tem comprising three distinct phenotypes: a primary producer, Synecococcus spp. (SYN), fila-

mentous anoxygenic producers (FAP), namely Chloroflexus spp. and Roseiflexus spp.; and

sulfate-reducing bacteria (SRB, composed by Thermodesulfovibrio spp.-like activity, [32]), as

described in [33]. Results emphasize trade-offs between distinct bacterial growth rates based

not only on environmental conditions and genome-scale descriptions of each strain, but also

thermodynamical quantitative predictions that are consistent with experimental knowledge.

Material and methods

Metabolic networks as constraint-based models

The genomic data for a particular microorganism describes a set of genes, allowing the identi-

fication of enzymes and related reactions. Reactions produce metabolites that are used as sub-

strates in subsequent reactions; such interplay constitutes a “metabolic network” whose size

may vary from few tens to several hundreds of reactions [14]. Metabolic networks are modeled

(Fig 1A) in order to study the physiology of the relevant microorganism. In particular, meta-

bolic models are used to infer reaction rates, also known as fluxes, without using kinetic

parameters. For this purpose, a metabolic model is formally described by its stoichiometric
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matrix S (Fig 1B), where the rows correspond to the metabolites and the columns correspond

to the reactions considered in the metabolic network. At steady-state conditions, the rate of

formation of internal metabolites is equal to the rate of their consumption. This is expressed

by the flux balance equation Sv = 0, where v = (v1, . . ., vr) stands for the flux vector, i.e., vj is

the flux of reaction Rj for all j = 1, . . ., r.

Under steady-state conditions, the continuous supply of metabolites from the media is facili-

tated by exchange reactions at a constant rate (dark gray eclipses and dashed lines in Fig 1A and

highlighted dark gray block in Fig 1B). This matter exchange with the media allows the meta-

bolic network to be in a non-equilibrium steady state (NESS). If metabolite exchange were not

possible, then for each reaction the only possible state would be the chemical equilibrium, with

all net fluxes equal to zero [31]. In the following, B and ξ represent, respectively, internal reaction

and exchange reaction submatrices (light gray and dark gray blocks in Fig 1B, respectively).

Occasionally, exchange rates may be experimentally measured and incorporated into the model

as equations of the form vi = b for reaction i. In addition, maximal and minimal flux values may

be expressed as lower and upper bounds constraints, by equations of the form li� vi� ui, result-

ing in a model described as a set of constraints. Such models are termed CBMs. CBMs usually

comprise more reactions than metabolites; therefore, these models are undetermined in that

when a solution v exists, it is not unique. All feasible solutions define a “flux space” (Fig 1C) that

may be further analyzed through several state-of-the-art approaches. For a detailed review of

these methods, the reader may wish to refer to [13] and [14].

Flux balance analysis. Flux balance analysis (FBA) is one of the most widely used

approaches for the identification of points of interest in the flux space [14]. Using this method,

an objective function (for example, biomass production) is stated and its maximal value within

the flux space is determined. In addition to the flux balance constraints, FBA utilizes flux

capacity constraints that limit the fluxes of reactions. An optimal flux vector may be obtained

by solving the following linear program (LP):

maximize
v 2 Rn

z ¼ c⊺v

subject to

Sv ¼ 0

li � vi � ui i ¼ 1; . . . ; n;

where c⊺ v is a linear combination of fluxes that represents the objective function (i.e., biomass

production or growth rate). From linear programming theory, it is known that the optimal

value z� of objective function is unique; however, multiple flux distributions (i.e., values of v)

that achieve the same optimal value z� may exist.

Flux variability analysis. The set of all optimal flux distributions, i.e., those with an opti-

mal objective value of z�, may be investigated by using Flux Variability Analysis (FVA) to

Fig 1. Construction of a Constraint Based Model (CBM). (A) Metabolic Network is represented as a chart

of metabolites (ellipses) trough chemical reactions (arrows); borders represent the system boundary. (B)

depicts the Stoichiometric Matrix, in which reactions are presented as columns and metabolites as rows.

Each coefficient Sij of the matrix corresponds to the stoichiometric coefficient of metabolite Mi in reaction Rj,

with reactants as negative and products positive. Exchange reactions and exchange metabolites are placed in

the right and inferior section of the matrix, respectively. Therefore, submatrix ς is in the left and highlighted in

light gray while submatrix ξ is highlighted in dark grey (see text). Normal gray depicts a matrix with only zeros.

(C) Flux space, also known as “solution space”, is defined by the set of restrictions of the CBM (mass balance

in steady state, bounded reaction rates, etc.) and contains all possible values of v.

doi:10.1371/journal.pone.0171744.g001
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determine the flux range of each reaction in the metabolic network [14]. Formally, FVA solves

the two following LPs for each reaction Rj:

maximize = minimize
vj 2 R

vj

subject to

c⊺v � a � z�

Sv ¼ 0

li � vi � ui; i ¼ 1; . . . ; n

where a 2 R; 0 � a � 1 represents the fraction of the optimum value with respect to the FBA

objective value to be considered. FVA allows the user to infer specific properties of the fluxes

involved. For example, essential reactions have strictly positive or negative fluxes, whereas

blocked reactions are constrained to have a flux value equal to zero.

Both FBA and FVA are today state-of-the-art tools to explore CBMs [13]. From a computa-

tional viewpoint, several algorithms are available to solve these optimization-based approaches

(see section Solving Linear Optimization Problems).

Thermodynamic constraints metabolic networks. FBA and FVA utilize constraints

derived from mass conservation laws; however, it is possible to exploit thermodynamic laws to

derive constraints in order to obtain further insights into the behavior of a metabolic system

[31, 34, 35]. In biochemical systems, each metabolite has an associated chemical potential μi

(expressed in J.mol−1), which quantifies the potential to perform chemical work. Chemical

potentials depend on metabolite concentration according to mi ¼ m0
i þ RT lnðxi=x0

i Þ, where xi

is the molar concentration, x0
i is the standard reference concentration (1 M) and μ0 is the stan-

dard chemical potential (dependent on temperature, pressure, and ionic strength); these are

usually tabulated [36, 37]. For a reaction j, the stoichiometric sum of the chemical potentials of

the metabolites involved is equal to the Gibbs energy of the reaction, i.e., DrGj ¼
Pn

i Sij mi

where Δr Gj� 0 for a spontaneous reaction. In the following, we note the Gibbs energy of reac-

tion as a difference of potentials, i.e., Δμj¼
: Δr Gj.

Under NESS conditions, the entropy balance implies that Δμ⊺ vB = μ⊺ vξ, where vB represents

the internal portion of fluxes, vξ boundary fluxes, and Δμ and μ are vectors of components Δμj

and μi, respectively. The term μ⊺vξ represents the chemical motive force or cmf of the network,

which accounts for energy related to boundary fluxes [31]. This equation may be interpreted

as internal fluxes being driven by the consumption of external chemical potential.

The integration of such equations into general CBMs is not straightforward, as in most of

applications, concentrations xi are not known; therefore, these must be introduced as variables.

As a result of non-linear expressions, CBM formulations using these constraints are generally

more complex to solve [38–40].

Solving linear optimization problems. In general, optimization problems are aim at

determining f(v) where v is usually required to satisfy constraints. Linear optimization prob-

lems (LPs) are a particular kind of optimization problem where both objective function and

constraints may be expressed as linear functions of variables, i.e., max f = c⊺v, Av = b; where v

is a vector of variables, c is a row vector of n coefficients, A is a matrix of n columns and m
rows, and b a column vector of m values. The solution space of LP problems are polyhedrons

that are characterized by their extreme points.

The first algorithm to solve a LP, which was proposed in 1947 by Dantizg [41], was based

on the fact that if the objective function has an optimum value in the feasible region, then it

reaches this value in at least one of the extreme points. The algorithm begins its search in one
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vertex of the feasible region and then starts visiting adjoint vertexes until the objective function

value cannot be improved. Currently, several solvers such as GUROBI [42] or GLPK are capa-

ble of solving LPs and other types of single objective problems (SOPs) efficiently.

From single microorganisms to microbial ecosystems

In order to model a microbial community, each strain is considered a single compartment [19,

25, 27] that shares metabolites with other strains (see Fig 2A). As the stoichiometric matrix of

a single organism, the structure of the ecosystem is described by a stoichiometric matrix Sσ,

which is formed by the stoichiometric matrices of each single organism. Accordingly, for a

community of k microorganisms, k metabolic models must be considered and represented by

their corresponding stoichiometric matrices: Sl, l = 1, . . ., k.

As shown in Fig 2B, matrices S1 to Sk are used to construct a diagonal block matrix. Each

block is linked to a pool compartment, that mirrors exchange fluxes between each organism

and the environment (−ξl, for l = 1, . . ., k in Fig 2B). A set of exchange reactions Rq to Rn for

metabolites Mq to Mn between the Pool and the external environment, is additionally set (bot-

tom right in Fig 2B). Finally, as for single organisms, a steady state hypothesis restricts the

solution set by adding a constraint Sσ v = 0. Together with flux bound constraints li and ui,

these constraints describe a solution flux space, as depicted in Fig 1C.

Multi objective flux balance analysis of a microbial ecosystem. Each compartment

above corresponds to an organism with a specific objective function ck. Accordingly, the fol-

lowing multi-objective optimization problem, for analyzing flux balance conditions

(MO-FBA), may be defined:

maximize
v 2 R�n

f1

. . .

fk

0

B
B
B
@

1

C
C
C
A
¼

c⊺
1
v

. . .

c⊺kv

0

B
B
B
@

1

C
C
C
A

subject to

Ssv ¼ 0

li � vi � ui i ¼ 1; . . . ; �n

where (f1, . . ., fk)⊺ are the objective functions of the k organisms and �n is the total number of

reactions (i.e., the sum of reactions of each organism and exchange reactions from the pool

compartment). The general class of MO-FBA problems is referred to as the multi objective
problems (MOP) [29, 43]. Contrary to single objective problems, solution of MOPs is a set of

vectors instead of a single value, producing a Pareto front (see section Solving Multi Objective

Optimization Problems), defined in the objective space (Fig 2C). In our present formulation,

all constraints and objective functions are linear, thereby resulting in a particular type of MOP

known as the multi-objective linear problem (MOLP).

Fig 2. Illustration of microbial ecosystem CBM. For the sake of illustration, an ecosystem may be

considered to comprise three microbial strains. (A) According to the metabolic model, each microorganism is

considered a separate compartment, depicted here in green, orange, and purple. Metabolic networks are

linked via an additional compartment, termed the “pool” (blue)), which sums up all external metabolites

exchanged between organisms and the environment. (B) depicts the Stoichiometric Matrix Sσ, where each

compartment is colored accordingly, with their corresponding ς and ξ submatrices. (C) Pareto front. When

performing an FBA for multiple organisms, a set of points known as the Pareto front (in yellow) is obtained.

Objective functions f1, f2 and f3 define the “objective space”.

doi:10.1371/journal.pone.0171744.g002
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Interpretation of MO-FBA can be done in terms of growth rates and resources used to pro-

duce such growth. Indeed, if one of the members of the ecosystem decreases its growth rate,

more resources are available for other members. According to their particular physiologies,

they can use these new available resources to increase their own biomass. A guideline contain-

ing three ideal cases for two guilds is provided in S1 File.

Flux variability analysis of a microbial ecosystem. Given a particular point f� of the

Pareto Front, the multiple optimal flux solutions that achieve the optimal objective values, as

given by the Pareto optima f�, must be explored. To this end, we propose the use of the multi-

objective FVA (MO-FVA) for multiple organisms, which may be considered a straightforward

extension of FVA (see Flux Variability Analysis). Indeed, given a reaction Rj with j ¼ 1; . . . ; �n,

the range of the flux vj may be determined by solving the following LPs:

maximize = minimize
vj 2 R

vj

subject to

C⊺v � a � f�

Ssv ¼ 0

li � vi � ui i ¼ 1; . . . ; �n

where C is the matrix such as the column j corresponds to objective function cj, i.e, C is col-

umn defined as C = [c1, . . ., ck]. a 2 R; 0 � a � 1 is the fraction of the optima considered.

Thermodynamics analysis in the context of a microbial ecosystem. Biological systems

are hypothesized to favor thermodynamic states where entropy production is maximal [44,

45]. To take into account this hypothesis, given a particular point f� of the front, we propose

the following: First, a MO-FVA must be applied to determine Rj for each reaction, with j ¼
1; . . . ; �n and the range [aj, bj] of the flux vj near the Pareto optima f�. Next, the following opti-

mization problem must be considered:

maximize
i2x

cmf ¼
P

mivi

subject to

ai � vi � bi; i 2 x;

m0
i � dgi � mi � m0

i þ dgi;

where ξ is the set of exchange reactions and dgi ¼ RTlnðxi=x0
i Þ. As cmf is non-linear, optimiza-

tion algorithms based on heuristics must be used in order to obtain a numerical solution to

this problem (see Computational Procedures).

Solving multi objective optimization problems. In 1906, Vilfredo Pareto in his Manuale
di Economia Politica, stated that, while (economic) optima have not been achieved, it is possi-

ble to increase the objective of an agent (i.e., welfare) without decreasing that of another [46].

In the following, a formal definition of Pareto optima and efficient solutions is given [43] and

approaches to solutions are discussed.

Let X � Rn and Y � Rp represent the flux space and objective space, respectively, where

X is defined by the set of restrictions and Y :¼ fy j y ¼ fðxÞ; x 2 Xg, with f ¼
ðf1ðxÞ; . . . ; fpðxÞÞ

⊺
denoting the objective functions. If both X and Y are constructed using lin-

ear restrictions and linear objective functions, the MOP represents a MOLP.

A point y 2 Y is a Pareto optimum if there is no y� 2 Y such as y�j � yj; j ¼ 1; . . . ; p and y

6¼ y�. Similarly, yw is a weak Pareto optimum point if there is no y� such as

y�j > yw
j ; j ¼ 1; . . . ; p. A point x 2 X is an efficient solution if there is not a x� 2 X such that

Microbial ecosystems multi-objective constraint-based modeling
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f(x�)� f(x). A xw 2 X is a weak efficient solution if there is no x� 2 X such as f(x�)> f(xw).

Therefore, a (weak) Pareto optimum is the image of a (weak) efficient solution. Note that all

efficient solutions are also weakly efficient solutions but no vice-versa. The collection of Pareto

optimal points is termed Pareto Front.

Approaches for solving MOPs have been reviewed, for example, by [43] and [47]. Tradi-

tional approaches makes use of “scalarization techniques”, that involve the transformation of

the MOP into a SOP by using a real-valued scalar function of the objective functions. Solution

approaches using scalarization techniques aim to find the set of (weak) efficient solutions

x� 2 X .

The most well known approach is the “weighted sum approach”, wherein the weighted sum

of the objective functions is optimized, i.e., max ∑ λk fk(x), where x 2 X and λ 2 Rp is a given

weight vector with components λk� 0 and at least one λk > 0. If x� is a solution of this SOP

then x� is an efficient solution of the MOP. Furthermore, if the MOP is convex, the inverse is

also true.

Another commonly used approach is the “�-constraint method”, where only one objective

function is retained as the objective and the remaining objective functions are used to intro-

duce new constraints. Then, the j-th �-constraint problem is as follows: max fj(x), subject to

fi(x)� �i, i 6¼ j and x 2 X . If x� is a solution of this SOP, then x� is a weak efficient solution of

the MOP.

Not all approaches rely on scalarization: for MOLPs, a set of algorithms describing the

shape of the image of efficient points, YE :¼ fCx j x is efficientg, referred to as “outer

approximation” or “Benson type” algorithms, have been described [48–51]. Generally speak-

ing, these type of algorithms calculate Y and identify their vertices, which correspond to

Pareto optimal points; additionally, despite their names, these algorithms provide exact solu-

tions. BENSOLVE [52], a solver based on these approaches, computes a set of directions and

points describing the image of the efficient points.

Existing CBM approaches for communities. The various approaches to studying micro-

bial communities have been recently reviewed by Biggs et al. [21] and Perez-Garcia et al. [22].

Among the methods reviewed, OptCom most closely resembles the approach presented here,

in that each member of the community is considered to maximize its own biomass. OptCom

is based on bi-level optimization, where an “outer” maximization problem represents the

whole community and each member of the community is represented by a “inner” optimiza-

tion problem. Inner optimization problems are solved using the primal-dual theorem, which

transforms the whole bi-level formulation into a non-convex single-objective form [25]. A sec-

ond approach that combines compartments and FBA, known as community flux balanced

analysis, advocates the application of a “balanced growth” hypothesis, wherein each compart-

ment grows at the same rate. Furthermore, this approach considers the biomass fraction of

each member of the community. In general, the approach is non-linear, although it may be

made linear by fixing biomass fractions and solving the corresponding FBA. Then, optimal

solutions for various combinations of biomass fractions may be explored [27]. For illustration

purposes, the application of our approach to the analysis of a microbial ecosystem is discussed

below.

Case study: Hot spring mat

In order to illustrate the application of the present approach, we modeled the microbial ecosys-

tem of hot spring microbial mats [33]. Briefly, this ecosystem is composed of three guilds, rep-

resenting three commonly found phenotypes: Synechococcus spp. (SYN), Chloroflexus spp. and

Roseiflexus spp. (FAP) sulfate-reducing bacteria (SRB). SYN is a primary producer that fixes
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carbon and nitrogen for further utilization by other strains. The use of these guilds allows sim-

plification of the ecological diversity while capturing essential metabolite-exchange relation-

ships. Under light conditions, the major fate of nutrients involves assimilation into cells [53];

therefore, most of the overall system growth occurs during the daytime. As growth rates are

related to biovolumes, predictions may be compared with relative abundance data. Therefore,

we will focus on the daytime model as described in [33] (Fig 3), assuming a simplified night-

time behavior, as described below.

Using the available compartment model of this system, as described in [33], we performed

a manual curation (i.e., balancing equations and including intermediate reactions) using

METACYC [54]. Model equivalent reactions in [33] are provided in S2 File. Nitrogen fixation

has been shown to take place at night and in the early morning [55, 56]; therefore, a nitrate

assimilation mechanism for SYN was included and considered as functional. Finally, biomass

coefficients of each guild were scaled to match 1 (h−1) as maximal growth rate [57].

Glycolate is produced by the use of O2 instead of CO2 by the Rubisco enzyme; the flux ratio

between the use of O2 and CO2 varies between 0.03 and 0.07. This restriction was included

Fig 3. Day Model of the Hot Spring Mat Community. The model comprises three guilds of microorganisms of the SYN, FAP, and SRB phenotypes.

Organics acids produced by SYN may be utilized by FAP and SRB. FAP is capable of fixing carbon by anoxygenic photosynthesis. Under anoxygenic

fermentation conditions, FAP is additionally capable of producing hydrogen, which, in turn, may be used by SRB.

doi:10.1371/journal.pone.0171744.g003
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linearly in the model by fixing a ratio of 0.03 between SYN reactions RXN-961 and RIBULO-
SE-BISPHOSPHATE-CARBOXYLASE-RXN during all calculations, under the hypothesis

that the system is in anaerobic state.

Excess photosynthate producing during the day is stored as polyglucose (PG) by SYN. PG is

fermented at night, producing several organic acids that accumulate in the media and are inte-

grated as biomass mostly under light conditions [53, 58]. In order to capture this behavior in

the daytime model, PG was not allowed to accumulate; therefore, the excess photosynthesis

activity is redirected through acetate production. Accordingly, in our model, acetate is inter-

preted as equivalent to several forms of reduced carbon.

For each of the exchanged metabolites, standard Gibbs energies for biological conditions

were obtained from [37], using calculations from [36]. Values used are found in S2 File. For

the pseudo-compound hv (representing photons), a standard chemical potential was

estimated based on glucose synthesis from CO2: 6CO2+6H2O� !
48 hv

C6H12O6. The

assumption that this reaction approaches equilibrium at standard biological conditions (i.e.,
Δμ = 0) implies that μhv = 68.6 kJ.mol−1 (S2 File). The metabolite concentration was allowed to

vary between 103 and 10−3 M, and therefore chemical potential equals mi ¼ m0
i � dg, where

dg = RTln(103)� 20 (kJ.mol−1) for T = 75˚Celsius. For water and hv, concentrations were

considered as fixed at 1 M, implying dgH2O
= dghv = 0.

Computational procedures

For each guild, a metabolic model was built in MATLAB and an ecosystem stoichiometric

matrix Sσ was constructed, as described above. MO-FBA was carried out using BENSOLVE

[52]. In order to analyze nitrogen and carbon fluxes through MO-FBA results, a MO-FVA was

performed using GUROBI [42] through Python interface over a mesh of 5 151 equally distrib-

uted points in the Pareto surface at 90% fraction of optimum. Then, we subdivided the Pareto

surface into 225 similar regions; for each of these regions, we calculated their maximum (as

well as their minimum) as the average of MO-FVA maxima of mesh points contained (this

procedure was repeated for the minima). Thermodynamics calculations were performed over

the same mesh as the MO-FVA using a truncated Newton conjugate algorithm [59] contained

in scipy optimization module. Heatmaps and surface illustrations were generated using mat-

plotlib [60] with ad-hoc scripts.

From methods discussed in Biggs et al. [21] and Perez-Garcia et al. [22], OptCom [25] was

chosen for comparison, as this method resembles the approach applied to the present work.

We applied OptCom and Descriptive OptCom to the hot spring mat model, as follows: first,

11 points were calculated using OptCom, as described by [25], each with a different upper

boundary value for SYN biomass; these values ranged from 1.0 to 0.0 with a step of 0.1 (i.e. 1.0,

0.9, 0.8, . . ., 0.0). Second, Descriptive OptCom was applied three times using SYN to FAP

ratios of 1.5, 2.5, and 3.5, respectively. All programs were written in GAMS language and

solved using BARON [61] through the NEOS Server [62–64].

All scripts are available in https://gitlab.univ-nantes.fr/mbudinich/MultiObjective-

FBA-FVA

Results

Biomass distribution as relative microbial strain abundance

SYN, SRB, and FAP growth rates are represented in a 3-dimensional space, in each axis,

respectively, in Fig 4A. MO-FBA solutions are described as a Pareto front, representing a sur-

face with five extreme points of biomass growth: (1, 0, 0), (0, 1, 0), (0, 0, 1); the points
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corresponding to the maximal growth rates of each guild, and points (0.27, 0.00, 0.89) and

(0.00, 0.46, 0.65). In the following, these points are designated P1, P2, P3, P4, and P5, respec-

tively. For clarity, this Pareto front is then projected in a two-dimensional space. Therefore,

over a triangular surface defined by P1, P2, and P3, heatmaps were produced using the values

for the growth rate of SYN, FAP, SRB, as well as their sum, to depict the overall microbial

abundance (Fig 4B–4E, respectively). Each vertex of the triangle represents the maximal

growth rate of a guild, while its opposing side represents a zero growth rate for that guild.

The results show that when each guild grows at its maximal rate, no biomass is produced by

the other guilds. The sum of the growth rates is always minimal in vertices (blue areas in

Fig 4E). As the growth rates may be directly related to biovolumes [33], red to yellow areas in

Fig 4E represent regions where most of the total biomass of the ecosystem is present. Notably,

these regions correspond to guilds growing at sub-optimally rates.

Nitrogen and carbon fluxes between microbial guilds

Multi-objective FVA was performed in the P4 and P5 regions to explore NH3 import and export

fluxes between guilds (Fig 5A, upper and lower panel, respectively). Notably, the growth rate of

each strain was found to be related to the use of ammonia; the SYN guild re-oxidized ferredox-

ins, which were reduced in the photosynthetic reactions, via nitrate assimilation reactions,

thereby promoting permanent ammonia production. When growing sub-optimally, NH3 that is

not used to build biomass is excreted. This point is emphasized in Fig 5A, where both maximal

and minimal reaction rates are strictly positive for SYN, resulting in an export to the pool.

Nitrogen uptake by FAP and SRB occurs solely from ammonia that is available in the pool

compartment; therefore, these strains compete for its intake. When SRB is not growing

Fig 4. 3D and 2D Projections of Pareto Front. (A) shows a 3D Pareto front, in yellow, describing the maximal growth rates of SYN, FAP, and SRB (in

terms of units per hour, h−1), when considered as a system. It is evident that a decrease in the growth rate of one organism results in an increase in that of

the other two, but not necessarily in equal proportions (see S1 Video for an animated view). The sum of the growth rates of all the guilds in P4 and P5 was

1.16 (h−1) and 1.11 (h−1), respectively. In (B), (C), (D), and (E), the Pareto front was projected onto the triangular surface formed by P1, P2, and P3. (B), (C),

and (D) shows the respective growth rates for SYN, FAP, and SRB, respectively. (E) shows the sum of the three growth rates, which represent the total

biomass of the ecosystem.

doi:10.1371/journal.pone.0171744.g004

Microbial ecosystems multi-objective constraint-based modeling

PLOS ONE | DOI:10.1371/journal.pone.0171744 February 10, 2017 13 / 22



Fig 5. Multi Objective FVA. (A) shows NH3 maximal and minimal fluxes for SYN, FAP, SRB, and pool compartments (green, yellow,

purple, and blue respectively) for extreme points P4 and P5. The export of NH3 by SYN is correlated with a drop in their growth rate;

similarly, increases in NH3 intake are correlated with increases in the growth rates of FAP and SRB. (B) Three sections selected for the

illustration of MO-FVA; (C) Mean values of the minimal and maximal fluxes over selected sections of NH3, CO2, acetate, and glycolate

(columns) for each section (rows).

doi:10.1371/journal.pone.0171744.g005
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(superior panel in Fig 5A), excess of NH3 is taken up mainly by FAP (both minima and max-

ima are negative, implying an intake from the pool). Small amounts that are not taken up by

FAP may be either taken up by SRB (maximal rate value is null and minimal rate negative,

which depicts a possible import) or excreted to the external environment (pool maximal rate

value is positive and minimal rate value is null, which depicts a possible export to the media).

When SRB is growing (inferior panel of Fig 5A), the uptake rate of ammonia by SRB and FAP

is similar, with no export to the external media.

In order to analyze the relationships between the growth rate of each strain and nitrogen-

or carbon-related fluxes, we performed a MO-FVA as described in Computational Procedures,

focusing on exchange reactions. For the purpose of illustration, we highlighted three sections

from 225 calculated, as shown in Fig 5B. These regions were chosen to depict the theoretical

interplay between SYN and FAP when the growth rate of SRB is low [65]. Flux variability of

exchange fluxes for these regions is shown in Fig 5C (see S1 Fig for an alternative representa-

tion and S2 to S5 Figs for a complete MO-FVA for ammonia, acetate, carbon dioxide and gly-

colate fluxes).

For NH3 exchange reactions, high growth rates of SYN are related to lower levels of ammo-

nia export, which represents a limiting factor for FAP and SRB growth rates. This results in the

two strains competing for its use (S2 Fig). Fig 5C shows that most of the ammonia produced

by SYN is captured by FAP, while a small proportion is taken up by SRB. Ammonia that is not

captured is released into the pool.

SYN consumes approximately the same amount of CO2 under all relative abundance

conditions (see second column in Fig 5C and S4 Fig), indicating that carbon compounds

are involved in reactions that serve functions other than biomass synthesis. Acetate intake

by FAP is less restrained at low growth rates of SYN than at high growth rates (see Fig 5C

and S3 Fig).

The present results additionally emphasize that FAP and SRB produce relatively small

amounts of CO2 at low growth rates. However, when the growth rate of FAP increases, the

maximal excretion of CO2 reduces, whereas its minimal excretion increases; these data indi-

cate the theoretical efficiency of carbon management, as experimentally reported by [53]. Gly-

colate metabolism by FAP appears to be reversible as its minimal flux is negative (i.e., intake)

while its maximal flux is positive (i.e., excretion), implying that intake or excretion by FAP is

related to the relative abundance of other strains (see Fig 5C and S5 Fig for details).

Chemical potentials drive community growth rates

As discussed previously, the direct integration of thermodynamic constraints into MO-FBA

and MO-FVA formulations is complex. Instead, we used the thermodynamic optimization

problem stated in as a post-treatment analysis. Considering fluxes as computed by MO-FVA

in 5 151 points of Pareto front (as a result of which growth rates are also determined), we esti-

mated the corresponding maximal cmf for each point (Fig 6A).

Results show that higher cmf is associated with SYN growing at its optimal rate. Lower cmf
rates are related to a higher growth rate of SRB, whereas the impact of the growth rate of FAP

on the value of cmf appears to be lower than that of SRB.

Given that all surface showed positive values, all regions are feasible from a thermodynamic

viewpoint. Under the hypothesis that a biological system prefers configurations in which

entropy production is maximal, it is expected that an ecosystem would favor growth rates with

higher cmf (redder areas in Fig 6A), predicting higher SYN growth rates. This prediction is

consistent with in vivo field measurements of SYN: FAP relative abundance ratios in the range

of 1.5 and 3.5, with a low presence of SRB [33, 65], as shown in Fig 6B.
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Comparison with previous approaches

We compared growth rates and flux predictions of MO-FBA and MO-FVA with those

obtained by a comparable approach (OptCom [25]), as described in Computational Proce-

dures. Predictions obtained were mapped as points in the Pareto front (S6 Fig). Values of

growth rates, as well as their corresponding flux values for NH3, acetate, glycogen, and CO2,

are described in S2 File. As expected, all points calculated using the OptCom approach were

included in the Pareto front calculated by MO-FBA (S6 Fig). Furthermore, all flux predictions

for NH3, acetate, glycogen, and CO2 fall into the range predicted by MO-FVA. Without con-

straining SYN biomass (point O1), OptCom does not reach the maximal biomass optimum.

However, when SYN biomass is increasingly constrained (points O2 to O11), the total biomass

increases. This suggests the existence of local optima in the OptCom general formulation for

this model.

The composition of a community that function in a constant environment can be also

assessed using the approaches proposed in [27] and [28]. Here, we focus on modeling the com-

position of a community in a changing medium where the considered organisms could grow

not necessarily with the same growth rate

Discussion

As reported in previous studies, in particular [25], we extended state-of-the-art systems biology

constraint-based approaches to the modeling of microbial ecosystems, by considering a multi-

objective optimization framework. Within the ecosystem, each microorganism, with its own

Fig 6. Thermodynamics in the Pareto front. (A) Description of the chemical motive force (kJ.gr−1.DW−1.h−1) for each point of the Pareto front;

red regions indicate thermodynamically favored growth rates, while the points where the solver does not reach the optimal criteria are shown in

white. The obtained surface appears smooth, without sudden changes in neighboring values. (B) Description of the overall community biomass

distribution based on the growth rate of each strain, with a particular emphasis on regions supported by experimental measurements showing a

SYN: FAP ratio of between 1.5 and 3.5.

doi:10.1371/journal.pone.0171744.g006
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objective function, represents a building block that interacts with others via the exchange

metabolites. Furthermore, the genomic knowledge of each microorganism is integrated as a

set of metabolic constraints. The main advantage is represented by the capture of trade-offs on

objectives and metabolite exchange between members of the ecosystem. While previous works

report topological analyses that focus on pathways that promote cross-feeding between strains

(see [66, 67] for example), this study quantifies fluxes through these pathways as well as their

effect in objective functions, thereby representing a major step towards automatically produc-

ing trait-based models. Through the application of MO-FBA, we emphasize a full description

of the Pareto front that captures trade-offs in the optimal values of the objective function of

each microorganism. Additionally, we introduced MO-FVA as a tool for the analysis of

exchange fluxes between members of the community. These fluxes help to characterize the

optimal behavior of microorganisms, providing insights into the theoretical relative abun-

dances (i.e., a proxy for microbial diversity) and corresponding nutrients usage, that are based

on omics descriptions.

Unlike previous works that consider multiple objectives, our approach does not rely either

on assumptions about ecosystem behaviors, such as maximization of the total ecosystem bio-

mass, ([25, 26]) nor on the balanced growth ([27, 28]) of microbial strains involved. Instead,

we propose to describe all optimal solutions in the sense of Pareto in the objective space. This

approach provides several advantages: firstly, it includes any solution for a system objective

function expressed as a weighted sum of each compartment objective function (see [43] and

section Solving Multi Objective Optimization Problems). Therefore, it comprises all solutions

proposed by OptCom as system objectives for microbial communities [25]. Secondly, no addi-

tional complementary restrictions are required to focus on given solutions, i.e., imposing an

equal growth rate for all members, as proposed by Kandelwal et al. [27]. This restriction

remains valid for controlled microbial ecosystems. Third, the set of constraints remains linear,

which allows a description of the Pareto front for realistic ecosystems. In [25] and [26], formu-

lations are, in general, non-convex; in [27], the stated general optimization problem is non-lin-

ear. However, in order to solve MOLPs, a series of LPs must be solved for which exact

algorithms are fast, thereby reducing computational complexity. Note herein that the last two

points are mandatory to model natural ecosystems that are by definition composed of a large

number of microbial strains and mostly unconstrained.

For illustration purposes, we applied MO-FBA to the daytime part of the diurnal cycle of

the microbial hot spring mat system [33]. As most biomass fixation occurs during the day

phase [53], we assumed that daytime growth rates dominate overall ecosystem rates. Results

show that the maximal total biomass growth rate is achieved when each guild grows at a rate

below its theoretical maximum, which may, based on genomic knowledge, be interpreted as

an altruistic behavior. Mechanistically, when guilds make resources available to others, they

lower their objective value by a certain proportion, based on metabolic pathways used to syn-

thesize those resources and their biomass function. Conversely, the use of new available

resources increases the value of the objective functions of the other guilds. Therefore, the

growth rate of the global maximal ecosystem, which was designated P4 in our case study,

should correspond to the optimal resource allocation scenario from the ecosystem viewpoint.

P4 also corresponds to the optimal solution to maximal ecosystem biomass [25].

MO-FVA results show that nitrogen flux is correlated to growth rates, and that the three

guilds compete for their usage. In contrast, CO2 consumption and glycolyte and acetate pro-

duction by SYN do not seem to be correlated with its growth rate, indicating that these pro-

cesses are not carbon-limited. Reduced carbon, represented by acetate, appears as being the

main carbon flux in the system for FAP and SRB, and becomes a limiting nutrient for FAP at
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high growth rates. This result is consistent with those of [53] and [58], in which a high propor-

tion of reduced carbon was shown to be assimilated by FAP.

By coupling MO-FVA results with chemical potentials, we were able to analyze thermody-

namic constraints and study favored conditions of the Pareto front by comparing their respec-

tive maxima cmf. We observed that the SYN: FAP ratio, predicted using this criteria, is closer

to the 1.5 to 3.5 value observed in field measurements. Thermodynamic considerations under-

line relative strain growth rates, or microbial diversities, that are more favorable from an ener-

getic viewpoint, which indicates that an ecosystem behaves according to two different

objectives: maximal biomass production and maximization of cmf, corroborating previous sys-

tems biology studies that advocate the use of distinct concurrent objectives to predict Escheri-
chia coli metabolic behaviors [68]. In both cases, observations were possible by general

investigation of the Pareto front.

Nevertheless, further refinement of the thermodynamic calculations is warranted. In partic-

ular, the calculation of cmf does not consider biomass concentration; this may be overcome by

considering community fractions as proposed in [27] and [28]. Furthermore, in the current

model, biomass generation does not affect the overall ecosystem entropy; however, on an intu-

itive basis, a larger amount of biomass should increase an entropy term, in terms of Gibbs

energy, as a result of mass dispersion [69], thereby affecting cmf evaluation. These consider-

ations are out of the scope of the present work; however, they but raise interesting

perspectives.

Despite the above limitations, we consider the present form of the modeling approach as

fruitful guidance to gain qualitative as well as quantitative data for the metabolic interplay

between various species in an ecosystem. This method paves the way for improved contextuali-

zation of other -omics datasets in microbial ecology by providing a mechanistic description of

species co-occurrence via analysis of their metabolic interactions.
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